
I 4 4 IEEE TRANSAmIONS ON NEURAL NETWORKS, VOL. 6, NO. 1, JANUARY 1995

Diagonal Recurrent Neural Networks
for Dynamic Systems Control

Chao-Chee Ku, Student Member, IEEE, and Kwang Y. Lee, Senior Member, IEEE

Absmct-A new neural paradigm called diagonal recurrent
neural network (DRNN) is presented. The architecture of DR"

network with one hidden layer, and the hidden layer is comprised

system, one as an identifier called diagonal recurrent neuroidenti- however, the feedforward network is a Static mapping and
fier (DRNI) and the other as a controller called diagonal recurrent without the aid of tapped delays it does not represent a

the last three decades, and many promising results are reported
[4]-[131. Most people used the feedforward neural network

is a modified model of the connected recurrent

of self-recurrent neurons. %o ~ ~ " 9 s am utilized in a control

(f?"), combined with tapped delays, and the backpropagation
training algorithm to solve the dynamical problems;

_ -
neurocontroller (DRNC). A controlled plant is identified by the
DRNI, which then provides the sensitivity information of the
plant to the DRNC. A generalized dynamic backpropagation
algorithm (DBp) is developed and both DRNC and
DRNI. Due to the recurrence, the DR" can capture the dynamic

dynamic system mapping. On the-other hand. recurrlnt neural
networks [15]-[191 have important capabilities not found in
feedforward networks, such as attractor dynamics and the
ability to Store information for later Use. Of particular interest

to

behavior of a system. To guarantee convergence and for faster
learning, an approach that uses adaptive learning rates is devel-
oped by introducing a Lyapunov function. Convergence theorems
for the adaptive backpropagation algorithms are developed for
both DRNI and DRNC. The proposed DRNN paradigm is applied
to numerical problems and the simulation results are included.

I. INTRODUCTION

S Antsaklis [l] pointed out, the development in the A control area has been fueled by three major needs: the
need to deal with increasingly complex systems, the need
to accomplish increasingly demanding design requirements,
and the need to attain these requirements with less precise
advanced knowledge of the plant and its environment. Increas-
ingly complex dynamical systems with significant uncertainty
have forced system designers to tum away from conventional
control methods. However, the fundamental shortcomings of
current adaptive control techniques [2] , such as nonlinear con-
trol laws which are difficult to derive, geometrically increasing
complexity with the number of unknown parameters, and the
general unsuitability for real time applications have compelled
researchers to look for solutions elsewhere.

The massive parallelism, natural fault tolerance and implicit
programming of neural network computing architectures sug-
gest that they may be good candidates for implementing real-
time adaptive controllers for large-scale nonlinear dynamic
systems [3]. Several neural network models and neural leam-
ing schemes were applied to system controller design during

Manuscript received March 3, 1992; revised December 7, 1992. This
work was supported in part by a Navy/ASEE Summer Faculty Fellowship,
by the Environment Tectonics Corporation Neural Network Flight Control
Project, by NSF Grant EID-9212132, by the Research and Curriculum Devel-
opment for Power Plant Intelligent Distributed Control, and by NSFEPRI
Joint Project ECS-9216504, Experimental Development of Power Reactor
Intelligent Control. However, any findings, conclusions, or recommendations
expressed herein are those of authors and do not necessarily reflect the views
of NAWC, ETC, NSF, or EF'RI.

The authors are with the Department of Electrical and Computer Engineer-
ing, The Pennsylvania State University, University Park, PA 16802 USA.

IEEE Log Number 9207442.

1045-9227/95$04

is their ability to deal with time-varying input or output
through their own natural temporal operation [20]. Thus the
recurrent neural network (RNN) is a dynamic mapping and
is better suited for dynamical systems than the feedforward
network.

Almeida [21] pointed out that one should not expect a
major increase in the performance of a perceptron in every
situation, just by "throwing in" feedback. In most cases, the
best network structure will probably tum out to have feedback
only in a smaller group of units. Ljung [22] also mentioned
that, for system identification, the identifier must be chosen to
have a small number of parameters, i.e., fewer weights for our
neural network model. This is because the more parameters we
use, the higher is the random influence on the model. Since
a recurrent neuron already has an intemal feedback loop, it
captures the dynamic response of a system without extemal
feedback through tapped delays; thus the network model
can be simplified. In most control applications, the real-time
implementation is very important, and thus the neurocontroller
also needs to be designed such that it converges with a
relatively small number of training cycles.

With the objective of a simple recurrent network and a
shorter training time for the neural network model, a diagonal
recurrent neural network (DR"), as shown in Fig. l(b), is
developed. It can be shown that the DRNN model is a dynamic
mapping in a way the fully connected recurrent neural network
(FR") shown in Fig. l(c) is dynamic. Since there is no
interlinks among neurons in the hidden layer, the DRNN has
considerably fewer weights than the FRNN and the network
is simplified considerably.

This paper is organized as follows. In Section 11, a DRNN
model is developed. Also, the comparison of DRNN, F",
and FRNN in terms of their total number of weights, U0
mapping characteristics. Then a dynamic backpropagation
training algorithm is developed to train a DRNN based control
system. In Section 111, the convergence of the DRNN based
system is investigated, and an analytic method based on the

t . 0 0 0 1995 IEEE

Authorized licensed use limited to: Baylor University Libraries. Downloaded on March 08,2021 at 23:26:19 UTC from IEEE Xplore. Restrictions apply.

KU AND LEE DIAGONAL RECURRENT NEURAL NETWORKS 145

(C)

Fig. 1. Three different neural network architectures. (a) Feedforward neural
network. (b) Diagonal recurrent neural network. (c) Fully connected recurrent
neural network.

Lyapunov function is proposed to find the adaptive learning
rates for the DRNN. Some simulations are conducted in Sec-
tion IV. In the simulations, the bounded input bounded output
(BIBO) nonlinear plant control, the on-line adapting ability of
DRNN based control system, the non-BIB0 nonlinear plant,
the tolerance to disturbances, and the interpolation ability of
the DRNN based control system are investigated.

11. DIAGONAL RECURRENT NEURAL NETWORKS

Consider Fig. 1, where for each discrete time k , & (k) is the
zth input, Sj (k) is the sum of inputs to the jth recurrent neuron,
X j (k) is the output of the j th recurrent neuron, and O (k) is
the output of the network. Depending on the network, W',
WO, W D , or W H represents input, output, diagonal, or hidden
weight vectors, respectively. In this section the characteristics
of D R " , F", and FR" shown in Fig. 1 are compared.
Then the application of DRNN in control is developed, which
includes developing the training algorithm for the DRNI and
DRNC and finding the bounds of the learning rates such that
the convergence of DRNN based control system is guaranteed.

A. The Comparison of D R " , FNN, and FRNN
Definition 1: An ordered tuple NT = {IP, HY, 0') repre-

sents a T-type neural network with p inputs (P), q sigmoid
neurons in the hidden layer (HY) , and T linear neurons in
the output layer (Or) ; N F , N D , and N R represent the
feedforward, diagonal recurrent, and fully connected recurrent
neural networks, respectively.

Definition 2: The variable GT represents the total number
of weights for a 7'-type neural network, where the symbol of
type T is same as defined in Definition 1.

Lemma 1: The total number of weights (including q bias
weights), for the N F , N D , and N R neural networks are

(1)

(2)

GF = (p + T + l) q

GD = (p + T + 2)q

GR = (p + T + l) q + y2 (3)
where variables are defined in Definitions 1 and 2.

Remark 1: If p = 4, q = 9, and T = 1, then GF = 54,
GD = 63, and GR = 135. In this small neural network case,
the number of weights of FRNN is about twice the number of
weights of DRNN. The increase in the number of weights from
DRNN to FRNN is A = q(q - l), which is 72 in the example.

Lemma 2: Define the U0 mapping, M : I" + On, and
O F , O D , and OR be the outputs of N F . N D , and N R ,
respectively. If we assume m = 3, n = 1, and I 3 =

(4)

(5)

(6)

{ r (k) , Y(k), 4k)). Then

Q F (k) = Q ; (T (~) , ~ (k) , 4 k))

OD@) = Q%-(l), Y U) , 4 1) ; 15 k)

OR(k) = Q Z (4 , ~ (l) , 4 l) ; 1 5 k)
where QN(.) is a nonlinear function, and 1 and k are non-
negative integers.

Proofi a) From Fig. l(a), we obtain

where fN(.> is a sigmoid function. Then for input vector I 3
assumed, it can be shown that the above equation can be
written as

O F (k) = Q E (l , (k) , i = I , 2 , . . , m)
= Q E (r (k) , ~ (k) , 4 k))

where Q K (.) is a nonlinear function, which represents a static
mapping neural network.

b) From Fig. l(b), we obtain
n m

oD(k) = Cw:fN + wyx~(k - 1)
j = 1

= j=1 2W:fN (ewLIz(k) a = 1 + WYfN

Authorized licensed use limited to: Baylor University Libraries. Downloaded on March 08,2021 at 23:26:19 UTC from IEEE Xplore. Restrictions apply.

~

146

where Q$(.) is a nonlinear function. Since this includes all
previous inputs, it represents a nonlinear dynamic mapping
neural network.

c) From Fig. l(c), we obtain
n / m n

where &$(.) is a nonlinear function, and it also represents a
nonlinear dynamic mapping neural network. This completes

0
Remark2: Lemma 2 shows that N F is a static mapping,

but both N D and N R are dynamic mappings. The difference
between N D and N R is that N R has more weights than N D ;
thus N R has more degrees of freedom to represent the output
function. In the sense of memory capacity, N R has more
memory space than N”, and thus both networks are very
much different for associative memory purpose. However, N”
is much simpler in structure compared to N R .

the proof of Lemma 2.

B . Diagonal Recurrent Neural Networks Based Control System

An approach for control and system identification using
diagonal recurrent neural networks (DRNN) [23] is presented
in this section. An unknown plant is identified by a system
identifier, called the diagonal recurrent neuroidentifier (DRNI),
which provides information about the plant to a controller,
called the diagonal recurrent neurocontroller (DRNC). The
neurocontroller is used to drive the unknown dynamic sys-
tem such that the error between plant and desired output
is minimized. A generalized algorithm, called the dynamic
backpropagation (DBP), is developed to train both DRNC
and DRNI. For simplicity, the plant is assumed to be single
input/single output system.

Both DRNI and DRNC use the same D R ” architecture
shown in Fig. l(b), which has only one hidden layer with
sigmoid type recurrent neurons. The block diagram of the
D R ” based control system is shown in Fig. 2. The inputs
to the DRNC are the reference input, the previous plant
output, and the previous control signal, and the output of the
DRNC is the control signal to the plant. By using the dynamic
backpropagation (DBP) algorithm developed in this paper, the
weights of the DRNC are adjusted such that the error between
the output of the plant and the desired output from a reference
model approaches a small value after some training cycIes.
When the DRNC is in training, the information on the plant

IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 6, NO. I , JANUARY 1995

Y(k ~ 1)

Fig. 2. Block diagram of D R ” based control system.

is needed. Since the plant is normally unknown, the DRNI is
used to estimate the plant sensitivity yu for the DRNC.

The current control signal generated from the DRNC and
previous output of the plant are used as the inputs to the
DRNI. The error between the output of the DRNI and plant is
computed for each iteration, and is used to adjust the weights
of the DRNI. By training the DRNI and DRNC altemately,
the weights of the DRNC can be adjusted more effectively.

C . Dynamic Backpropagation Algorithm for
Diagonal Recurrent Neural Networks

shown below:
The mathematical model for the DRNN in Fig. l(b) is

O (k) = c q - j (k , , Xj(k) = f (S j (k) > (7)
j

where for each discrete time k, & (k) is the ith input to the
DRNN, S j (k) is the sum of inputs to the jth recurrent neuron,
X j (k) is the output of the jth recurrent neuron, and O (k) is the
output of the D R ” . Here f(.) is the usual sigmoid function,
and W’, W”, and W O are input, recurrent, and output weight
vectors, respectively, in R”. , Rnd , and Rnc-.

Let yr(k) and y(k) be the desired and actual responses of
the plant, then an error function for a training cycle for DRNC
can be defined as

1
E, = T(Y,(k) - Y(k)?. (9)

In general, the plant response is a nonlinear mapping G (.)
of input u (k) , i.e., y(k) = G(u(Z), i 5 k) . Here, the plant
input u (k) is the output of the DRNC, i.e., u (k) = O (k) in
(7). On the other hand, in the case of the DRNI, the plant
input u(k) is the input to the DRNI.

The error function (9) is also modified for the DRNI by
replacing y,(k) and y(k) with y(k) and ym(k), respectively,
where ym(k) is the output of the DRNI, i.e.,

(10)
1

Em = 2(Y(k) - Ym(k)>2

Authorized licensed use limited to: Baylor University Libraries. Downloaded on March 08,2021 at 23:26:19 UTC from IEEE Xplore. Restrictions apply.

KU AND LEE: DIAGONAL RECURRENT NEURAL NETWORKS 147

where y,(k) = O(k) of (7).

weight vector W E R” is represented by

and

3- a s . (k) - X,(k - 1) + wj” d X j (k - 1) The gradient of error in (9) with respect to an arbitrary

dWj” awj”
which lead to (14a).

The procedure of deriving the gradient with respect to
input weight is similar to the above derivation, and the

~ aEC = - ec (k) - aY(k) = - e c (k) y u (k) - W k)
aw aw aW

(11) - ao(k>
- -ec(k)yu(k)- aW

where e,(k) = y,(k) - y(k) is the error between the desired
and output responses of the plant, and the factor y,(k) E

d y (k) / d u (k) represents the sensitivity of the plant with respect
to its input.

Since the plant is normally unknown, the sensitivity needs
to be estimated for the DRNC. However, in the case of the
DRNI, the gradient of error in (10) simply becomes

where e,(k) = y(k) - ym(k) is the error between the plant
and the DRNI responses.

The output gradient a O (k) / a W is common in (11) and
(12) and needs to be computed for both DRNC and DRNI. Its
computation is summarized in the following lemma:

Lemmu3: Given the DRNN shown in Fig. l(b) and de-
scribed by (7) and (P), the output gradients with respect to
output, recurrent, and input weights, respectively, are given by

where Pj(k) = a X j (k) / a W j ” and Qij = a X j (k) / a W $ and
satisfy

P,(k) = f ‘ (S j) (X j (k - 1) + WjDPj(k - l)),

Pj(0) = 0 (144

Qij (k) = f ‘ (s j) (I i (k) + WjDQij(k - I)) , Q;j(O) = 0.
(14b)

Proof: From (7), the gradient with respect to the output
weight is found as

Again, from (7), the gradient with respect to the recurrent
weight is

From (7) and (P),
ax, (I C) - ax, (k) as, (k)

corresponding equations, (13c) and (14b), follow. 0
Remurk.3: Equations (14a) and (14b) are nonlinear dy-

namic recursive equations for the state gradients ax, (k) / a W ,
and can be solved recursively with given initial conditions.
For the usual F”, the recurrent weight W y is zero and the
equations become algebraic.

1) Dynamic backpropagation for DRNI: From (12), the
negative gradient of the error with respect to a weight vector
in R” is

where the output gradient is given by (13) and (14), and
w represents W O , W D , or W’ in ~ ~ 0 , d. or ~ n , ,

respectively.
The weights can now be adjusted following a gradient

method, i.e., the update rule of the weights becomes

W (n + 1) = W (n) + 9 -~ (E:)
where 9 is a learning rate. The equations (13)-(16) define the
dynamic backpropagation algorithm (DBP) for DRNI.

2) Dynamic Backpropagation for DRNC: In the case of
DRNC, from (1 I), the negative gradient of the error with
respect to a weight vector in R” is

Since the plant is normally unknown, the sensitivity term
y,(k) is unknown. This unknown value can be estimated by
using the DRNI. When the DRNI is trained, the dynamic
behavior of the DRNI is close to the unknown plant, i.e.,
y(k) z y,(k), where y,(k) is the output of the DRNI.

Once the training process is done, we assume the sensitivity
can be approximated as

where u(k) is an input to the DRNI.
Applying the chain rule to (18), and noting that y m (k) =

O (k) of (71,

dYlm(k) - - a o (k)
a u (k) d u (k) ax, d u (k)

-=E-- dO(k) d X j (k)

Also from (7),

Authorized licensed use limited to: Baylor University Libraries. Downloaded on March 08,2021 at 23:26:19 UTC from IEEE Xplore. Restrictions apply.

~

148

Since inputs to the DRNI are u (k) and y(k - 1) from Fig. 2,
(8) becomes

S j (k) = WjDXj(k - 1) + W[ju(k) + W,'jy(k - 1) + Wij61
(21)

where bI is the bias for DRNI.
Thus

From (19), (20), and (22),

where the variables and weights are those found in DRNI.
Using the negative gradients in (17), the weights for DRNC

can now be adjusted using the update rule similar to (16). The
equations (13), (14), (16), (17), and (23) define the dynamic
backpropagation algorithm for DRNC.

111. CONVERGENCE AND STABILITY

The update rule of (16) calls for a proper choice of the
learning rate 7. For a small value of 71 the convergence is
guaranteed but the speed is very slow; on the other hand if
71 is too big, the algorithm becomes unstable. This section
develops a guideline in selecting the learning rate properly,
which leads to adaptive learning rate.

A discrete-type Lyapunov function can be given by

(24)
1
2

~ (k) = - e 2 (k)

where e (k) represents the error in the learning process.

training process is obtained by
Thus, the change of the Lyapunov h c t i o n due to the

1
2 AV(k) = V (k + 1) - V (k) = - [e2 (k + 1) - e 2 (k)] . (25)

The error difference due to the learning can be represented
by ~ 4 1

e (k + 1) = e (k) + Ae(k) = e (k) + - (26)

where AW represents a change in an arbitrary weight vector
in 72". .

A . Convergence of DRNI
From the update rule of (12) and (16),

where WI and 711, respectively, represent an arbitrary weight
and the corresponding learning rate in DRNI, and O (k) is
the output of DRNI. Then we have the following general
convergence theorem:

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 1 , JANUARY 1995

Theorem 1 : Let q I be the learning rate for the weights
of DRNI and 91, be defined as gI, m a : = maxk 11gr(k)ll,
where g I (k) = a O (k) / a W ~ , and 1 1 . 1) is the usual Euclidean
norm in R". Then the convergence is guaranteed if V I is
chosen as

(28)
2

S I , max
0 < 7 / 1 < 7 .

Proof: From (25)-(27), AV(k) can be represented as

e m (k) + ~ A e , (k)] 1

Since for DRNI ae,(k)/aWI = -aO(k) /dW~, we obtain

From (31), we obtain 0 < v1 < 2, and (28) follows. 17
Remark 4: The convergence is guaranteed as long as (31)

is satisfied, i.e.,

or

This implies that any 771, 0 < < 2, guarantees the conver-
gence. However, the maximum learning rate which guarantees
the most rapid or optimal convergence is corresponding to
q1 = 1, i.e.,

which is the half of the upper limit in (28).

larger than 71; does not guarantee the faster convergence.

the specific convergence criterion for each type of weights:

This shows an interesting result that any other learning rate

The general convergence theorem can now be applied to find

Authorized licensed use limited to: Baylor University Libraries. Downloaded on March 08,2021 at 23:26:19 UTC from IEEE Xplore. Restrictions apply.

KU AND LEE: DIAGONAL RECURRENT NEURAL NETWORKS I49

Theorem 2: Let $, $, and qf be the learning rates for
the DRNI weights Wy, Wp, and W;, respectively. Then

Proofi From (25), (26), (27) and (33), AV(k) can be
represented as

the dynamic backpropagation algorithm converges if 0 <
IWtjI < 1, j = 1, 2 , . . . , hr, and the learning rates are
chosen as

where h1 is the number of recurrent neurons in the hidden
layer, n r is the number of inputs to the DRNI, Wzmax:=
makllW?(k)ll, l I , m a x : = maxk I l I~(k) l l , and II . II is the
sup-norm.

Proof: a) From (13a),

where X' = [X:, Xi,. . . , X i I] * , and Xj' is the output value
of the j th neuron in the hidden layer, and h l is the number of
recurrent neurons in the DRNI hidden layer.

Since 0 < Xj' < 1, j = 1, 2 , . . . , h1, by the definition
of the usual Euclidean norm in Rhl , IlgI(k)ll < fi and
93, max = hl. Then from Theorem 1, (32a) follows.

0 b) and c) See the Appendix.

B. Convergence of DRNC
From the update rule of (16) and (17),

(33)

where ay(k)/du(k) = yu(k) is the plant sensitivity, W,
and v,, respectively, represent an arbitrary weight and the
corresponding leaming rate in DRNC, and O (k) is the output
of DRNC. Then we have the following general convergence
theorem:

Theorem 3: Let vc be the leaming rate for
the weights of DRNC and be defined as

and Smax = hJW,, ,,,W,, max/2. Then the convergence is
guaranteed if vc is chosen as

gc, max:= maxli llg(k)ll, 'where g c (k) a o (k) / a J K ,

'3

Comparing (34) with (30), it can be seen that both con-
ditions are similar, except the sensitivity yu(k) needs to be
incorporated in the DRNC. Therefore, it remains to find the
limit on yu(k) or y:(k).

Since, from (23),

Yu(k) = ~ W f j f V J W : 13
j

where Smax is the limit on sensitivity. Thus following the
proof of Theorem 1, we obtain

(35)
2

o < v c <
Skaxgc2, max

where gc, max: = maxk llgc(k)ll, and gc(k) = ao(k)/awc. 0
Remark 5 : As in the case of DRNI, the optimal conver-

gence rate is

* 1

which is the half of the upper limit in (35). Again, any other
leaming rate larger than 7; does not guarantee the faster
convergence.

Thus, in a way similar to DRNI, the specific convergence
criteria can be found as following:

Authorized licensed use limited to: Baylor University Libraries. Downloaded on March 08,2021 at 23:26:19 UTC from IEEE Xplore. Restrictions apply.

150 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 1 , JANUARY 1995

Theorem 4 : Let r f , 7/,D, and 17,' be the learning rates for
the DRNC weights W,", W,", and W!, respectively. Then
the dynamic backpropagation algorithm converges if 0 <
IWFj I < 1, j = 1, 2 , . . . , h,, and the learning rates are chosen
as

where h, is the number of recurrent neurons in the
hidden layer, n, is the number of inputs to the DRNC,
Wzmax: = maxk IlW,O(k)ll, L, max: = maxk IIL(k)lll and
L(k) = {b, u(k - 11, Y(k - 1)).

Proof. From Theorem 3, if we redefine 6, = T ~ S $ ~ ~ ,
then we obtain

(37)
2

gc, max
0 < 7 j , < r

which is the same form as (28) in Theorem 1 for DRNI.
Note that both DRNI and DRNC have the same D R "

architecture, and gI, and g,, max are defined in the same
way in terms of aO(k)/aW. Therefore Theorem 2 is valid
for 6, for all three types of weights, i.e.,

IV. SIMULATION RESULTS

The DRNC and DRNI are tested for five different examples.
The numbers of inputs to DRNC and DRNI are denoted by
nc and nx, respectively, and h, and hr denote the numbers of
neurons in the hidden layer for DRNC and DRNI, respectively,
and are chosen as h, = 2n, + 1, hx = 2n1+ 1.

In the simulation study, P, and PI are the inputs to the
DRNC and DRNI, respectively; NT and WT are the total
number of neurons and weights in the system (both DRNC
and DRNI), respectively; 77, and 771 are the initial learning rate
for the DRNC and DRNI, respectively; and b,, and bx are the
biases for the DRNC and DRNI, respectively. It can be verified
that NT = h, + hx + 2, and WT = (n, + 3)hc + (nx + 3)hr.

Example I : A BIB0 Nonlinear Plant [26]: In this case the
plant is described by the difference equation

y(k + 1) = - y(k) + u3(k)
1 + Y2(k)

and a reference model is described by the difference equation

y,(k + 1) = 0.6y,(k) + r (k)

where r(k) = sin (27rk/25)+sin (2rk / lO) . The objective is to
determine an input u (k) to the plant such that limk,, ly(k) -
y,(k)l < E, where E is a suitably chosen constant. In this
simulation study, P, = {.(IC), u(k - l) , y(k - 1)) and

WT = 67. In [26], however, a two-hidden layer feedforward
neural network with NT = 31 and WT = 281 is used, i.e.,
more than two times for the number of neurons and four times
for the number of weights compared to the DRNC and DRNI
combined.

Adaptive learning rates were used starting from the initial
rates of 17, = 0.1 and 771 = 0.1. Both learning rates are adjusted
according to the criteria developed in Section 111, and the
adaptive learning rates of the DRNI and DRNC are shown
in Fig. 3(a) and (b), respectively. As can be seen in Fig. 3(a)
and (b), the learning rates adapt to reduce the tracking error.
The learning rates for DRNI, #, $, and v;, after 60 training
epochs are adjusted to 0.04,0.0012, and 0.00012, respectively,
whereas the learning rates for DRNC, $, T:, and q:, after 60
training epochs to 0.0019,0.0035, and 0.000354, respectively.
The average errors for the cases of adaptive learning rates
and the different values of fixed learning rates are shown in
Fig. 3(c). As can be seen in the figure, the adaptive learning
rate scheme is stable and converges much faster. The result
after 60 training epochs (one epoch is equal to 50 time steps
in this example) is shown in Fig. 3(d). In [26], however, the
total of 100 000 training time steps were required, which is 30
times more than this result.

Example 2: The On-Line Adapting Abilio of DRNN Based
Control System: In this simulation study, all conditions are
same as in Example 1, except the reference input, .(IC), is
changed in order to observe the adapting ability of the DRNN
based control systems.

After the system in Example 1 is trained 60 epochs, the ref-
erence input, r (k) , is changed to become r (k) = sin (2 ~ k / 2 5) ,
and the result is shown in Fig. 4(a). This figure shows that
the DRNN based control system can catch the new reference
model quickly. When the new reference input r (k) is changed
to become a square wave with amplitude equal to 2, the
simulation result is shown in Fig. 4(b). After about 6 epochs,
the DRNN based control system catches the new reference
model. These results show the on-line adapting ability of the
proposed DRNN based model.

Example 3: The Recovering Ability from Disturbances: The
same plant and reference models of Example 1 are used in this
example. Both initial learning rates, v,, and 91, are chosen to
be 0.1, and both biases, b, and bx, are equal to 1.0. After
the DRNN's are trained already (i.e., after 60 epochs), a
disturbance ~ (k) is applied to the plant output during the 61th
and 62th epochs.

PI = { ~ (k) , ~ (k - l)}, thus nC = 3, 71.1 = 2, NT = 14, and

Authorized licensed use limited to: Baylor University Libraries. Downloaded on March 08,2021 at 23:26:19 UTC from IEEE Xplore. Restrictions apply.

KU AND LEE: DIAGONAL RECURRENT NEURAL NETWORKS

0.05+'

\
0 0 0 , , , , I [, I , I] ~ , I I I I I I , , 1 I , I I ! , I , ,

0 10 20 30 40 50 60

Epochs

(a)

2 0

- -
i

. -I
0 . o - a

0 50 100 1 50 200
Epochs

(C)

151

"'T

o..+..

L ,
0.0 , I ;, I , I , , I f , , , , ; , y . ;

0 10 20 30 40 50 60

Epochs

(b)

60 61
Epochs

(4
Fig. 3. Example 1: BIB0 nonlinear plant control. (a) Adaptive leaming rates of DRNI; 77 (solid line). q p (dotted line), and 7; (dashed line). (b) Adaptive
leaming rates of DRNC; 7: (solid line), T$ (dotted line), and qf (dashed line). (c) Average errors for the cases of the adaptive leaming rates and the different
values of fixed leaming rates; adaptive leaming rate (dotted line), fixed leaming rate with q1 = qc = 0.1 (solid line), and fixed leaming rate with 171 = 0.01
and qC = 0.1 (dashed line). (d) Outputs of reference model (solid line) and the plant (dotted line) after 60 training epochs.

In case 1, w(k) = 1.0 is applied to the plant output at the
61th and 62th epochs. In this case, the DR"-based control
system can recover from the disturbance quickly after about 4
epochs, as shown in Fig. 5(a). In case 2, w(k) = 5.0 is applied
to the plant output at the 61th and 62th epochs. The DR"
based control system can recover from the disturbance after
about 10 epochs, as shown in Fig. 5(b). When w(k) = 10.0
is applied, the DRNN based control system can still recover
from the disturbance; however, it takes a longer time.

Example 4: A Non-BIB0 Nonlinear Plant: The model ref-
erence control problem for a nonlinear plant with linear input
is considered below.

Reference model:

y r (k + 1) = O.GyT(k) + ~ (k)
where r (k) = p sin (27rk/100).

Plant model:

y(k + 1) = 0.2y2(k) + 0.2y(k - 1)
+ 0.4 sin [0.5(y(k) + y(k - l))]
.COS [0.5(y(k) + ~ (k - l))] + 1.24k).

The plant is unstable in the sense that given a sequence
of uniformly bounded controls { ~ (k) } , the plant output may
diverge. The plant output diverges when the step input U(k) =
0.83, Vk 2 0, is applied to the plant [27]. Thus in order
to guarantee the stability of the control system, the control
signal, u (k) , if a uniformly step input is to be applied,
must be less than 0.83. When a step input u (k) < 0.83
is applied to the plant, the maximum possible plant output
becomes gmax M 2.26. On the other hand, it can be seen
that the maximum reference output that the reference model
can generate is yr, max M qp, and this should not exceed the
maximum allowed plant output yma. This implies that the
reference signal needs to be restricted by p 5 0.9.

In this simulation study, P, = { ~ (k) , u(k - l), y(k - l)}
and PI = { u (k) , y(k - 1)); thus n, = 3, n1 = 2, NT =
14, and WT = 67. In [27], however, a two-hidden layer
feedforward neural network with NT = 21 and WT = 140
is used. First, p = 0.2 is used. Both initial leaming rates,
vc and 771, are chosen to be 2.0, and both biases, 6 , and br,
are chosen to be 1.0. The tracking process during the 70th

Authorized licensed use limited to: Baylor University Libraries. Downloaded on March 08,2021 at 23:26:19 UTC from IEEE Xplore. Restrictions apply.

152 IEEE TRANSACIIONS ON NEURAL NETWORKS, VOL. 6, NO. 1 , JANUARY 1995

6-

- 4 , , , , , ~ , , , , / , J , I ~ , , , l ~ l l l , ~ , , , , ~ l l , ,
60 61 63 65 67 69 71

Epochs

Epochs
(b)

Fig. 4. Example 2: On-line adapting ability of the D R " based control
system. (a) Outputs of reference model (solid line) and the plant (dotted line).
(b) Outputs of reference model (solid line) and the plant (dotted line).

to the 75th training epochs is shown in Fig. 6(a), and the
simulation result during the 96th to the 100th epochs is shown
in Fig. 6(b), which shows that the DRNC controls this plant
very well. When p = 1.0 is used, since the control signal is
not a uniform step input, this control system is still stable.
However, since ymax < yr, max, a sustained error exists.

One interesting observation is the control signal, u(lc). For
,8 = 0.2, the control signal shown in Fig. 6(c), is much less
than 0.83. This implies that the controller adapts itself in such
a way that the plant will not be out of bound. However, as the
value of p increases, the control signal u (k) also increases.
When p > 1.0 is used, a larger y,.,max is obtained. In order
to track this increased reference output, the control signal
~ (k) needs to be increased. However, when the control signal
is getting larger, exceeding 0.83 for a sustained period, the
plant becomes unstable. Another observation is on the plant
sensitivity. When the output goes through a large transient, the
sensitivity y,(k) increases, as shown in Fig. 6(d). Therefore,
the weight changes become larger and the controller can
capture the dynamic behavior of the plant quickly.

60 61 62 63 64 65 66

Epochs

(a)

1 0 7

Fig. 5. Example 3: Recovering ability from disturbances. (a) Outputs of
reference model (solid line) and the plant (dotted line) when the disturbance
is 1.0. (b) Outputs of reference model (solid line) and the plant (dotted line)
when the disturbance is 5.0.

Example 5: The Interpolation Ability of the DR" Based
Control System: Flight control is a very complex task; thus
a sophisticated control skill is needed. In this example, the
interpolation ability of the D R " based control system is
demonstrated via a flight control application. During the
training process, only few trim points are trained. After few
training epochs, an untrained trim point is applied and tested
in the DRNN based control system.

For initial study, a simplified second-order linear plant
model is assumed for a typical flight dynamic subsystem. An
objective of the flight controller is to maneuver the plant so
that it will follow a reference response generated by a reference
model. The assumed reference and plant models are given
below:

Reference model:
4.0

s2 + 2.82s + 4.0'
H (s) =

Plant model:
1.0 H (s) =

s2 + 2.09 + 1.0'

Authorized licensed use limited to: Baylor University Libraries. Downloaded on March 08,2021 at 23:26:19 UTC from IEEE Xplore. Restrictions apply.

KU AND LEE DIAGONAL RECURRENT NEURAL NETWORKS 153

-0.6-1

70 71 12 73 74 1 5 96 97 98 99 100 101

Epochs Epochs

(a) (b)

-0 .1

-0.2 ~'~~

1 - 0 . 2 , , 1 I ! I 1 I 1 ,
0 20 40 60 80 100 0 20 40 60 80 100

Time steps Time steps
(C) (4

Fig. 6. Example 4: Non-BIB0 nonlinear plant control. (a) Outputs of reference model (solid line) and the plant (dotted line) when /3 = 0.2. (b)
Outputs of reference model (solid line) and the plant (dotted line), from 96 to 100 epochs. (c) Control signal generated from DRNC (p = 0.2)-.
(d) Sensitivity generated from DRNI (p = 0.2).

For this second-order system [28] , z ~ (t) and ~ (t) are
chosen as the state variables, r(t) is the input to the reference
model, and ~ (t) and y (t) are input and output of the plant,
respectively. Here, the speed can be measured, i.e., ~ (t) is
available, q (t) = y (t) , and k l (t) = ~ (t) . The step input
is applied to the reference model. Here, P, = { ~ (t) , y (t -

nc = 3 and n I = 3. Also, NT = 16 and WT = 84. Here,
three sets of initial conditions for (q (O) , zz(O)), (0.0, 0.0),
(0.1, 0.3), and (0.5, 0.75), are selected as training seb. After
the neural networks were trained, a testing set is applied to the
system. In this simulation, (z1(0), z2(0)) = (0.8, 1.0) is the
testing set. Both initial learning rates, 7, and 771, are equal to
2.0, and both biases, b, and b1, are equal to 1.0.

After 10 training epochs or cycles, the error converges to a
small value. The error is shown in Fig. 7(a), and the outputs
of the reference model (yr) and plant (y) after 200 training
epochs are shown in Fig. 7(b). It is observed that there is
an oscillation in Fig. 7(a). This is because three different
training sets are used sequentially. The neural networks must

l), zz(t - l)}, and PI = { ~ (t) , y (t - l), zz(t - 1)); thus

be adjusted such that the error will be minimum for all training
sets. When a testing set, which is different but close to a
training set is used, the result is very good as can be seen
in Fig. 7(b). This implies that the neural network has the
interpolation ability if an untrained set is close to a trained
set.

V. CONCLUSION

This paper described the diagonal recurrent neural network
(DR") based control architecture, which includes the di-
agonal recurrent neurocontroller (DRNC) and neuroidentifier
(DRNI). The proposed model is compared with the feedfor-
ward neural network (F") and the fully connected recurrent
neural network (FR") in terms of number of required
weights and mapping characteristics. The DRNN model is
shown to have dynamic mapping characteristic. Moreover, it
requires fewer weights when compared with the FRNN model.
The above features allow the DRNN model to be used for
on-line applications.

Authorized licensed use limited to: Baylor University Libraries. Downloaded on March 08,2021 at 23:26:19 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACllONS ON NEURAL NETWORKS, VOL. 6, NO. 1. JANUARY 1995 154

0 50 100 150 200
Epochs

1.25T

0 o o O I
100 200 300 400 0

Time (x 1/50 sec)
(b)

Fig. 7. Example 5: Interpolation ability of the D R " based control system.
(a) Average error. (b) Outputs of reference model (y,.: solid line) and plant
(y: dotted line).

In a neural network based control system, the plant is
unknown in general; thus the sensitivity, which is required
during training process, is normally not available. Many people
simply ignore this sensitivity and use the direct contiol ap-
proach, whereas others use the simple method of sign changes
in the plant response as the sensitivity. However, in this
paper, a neuroidentifier is utilized to obtain the sensitivity, and
along with the neurocontroller the weight adjustment becomes
smoother than the case without the sensitivity information.

The convergence of a recurrent neural network is not easy
to be guaranteed. Needless to say, when an unknown plant is
combined with the neural network, it makes the convergence
of neural network based system even more difficult. A large
learning rate may make the system unstable while a small
learning rate makes the training process too slow. An approach
to find the bounds on learning rates based on the Lyapunov
function is developed. The use of adaptive learning rates guar-
antees convergence, and the optimal learning rates are found.

The simulations of the proposed model are conducted for
both BIB0 and non-BIB0 nonlinear plant control problems.

The D R " based control system is tested for its on-line
adapting ability, recovering ability from disturbances, and
the interpolation ability. The results show that the D R "
based control system is very promising for future real-time
applications.

APPENDIX
PROOF OF THEOREM 3(B) AND (C)

Proof of Part (b): We denote i 3 X j (k) / a W f j =
P~,j(k), then from (14a)

PI&) = f'(k)(Xj(k - 1) + W[jPI , j@ - 1))

where f ' (lc) E f'(Sj(k)). Thus the solution of the above
equation can be written as

1-1 I-m-1

PI,j(E) = n f'(l- n)xj(m)(W&)l-l-m
m=O n = O

I

n=l

Since P ~ , j (o) = 0, thus we obtain
1-1 l-m-1

P I , j (l) = n f' (l - 4xj(m)(w&)l-1-m,
m=O n=O

j = 1, 2;. . ,hr.

Since 0 < f'(Sj) < 0.5, 0 < Xj(m) < 1, and 0 < WF < 1
for j = 1, 2 , . . . , hr, thus

1-1 l-m-1

IPI>j(U I n If'@ - .>I IXAm>l lW?jll-m-l
m=O n = O

and
1-1

m=O

Let T = 1 - m - 1. Then
1-1 00

If'~,j(l)l 5 z(O.5)"'' I 0.5c(0.5)' = 1,

From (13b), we obtain

where IlW?(k)J(:= maxjIWfj(k)l. Thus for the output gra-
dient vector in Rhr,

Authorized licensed use limited to: Baylor University Libraries. Downloaded on March 08,2021 at 23:26:19 UTC from IEEE Xplore. Restrictions apply.

KU AND LEE: DIAGONAL RECURRENT NEURAL NETWORKS 155

Again we define WFm,: = maxkIIWy(k)(I. Then we obtain

(A.3)

Hence, from Theorem 2 and (A.3), (32b) follows.

& I , i j (k) . Then from (14b),

0
Proof of Part (c): We denote ax,(k)/dW/, ij =

Q I , i j (k) = f’(k)(I~,i(k) + W ~ ~ Q I , i j (k - 1)).
Again,

1-1 1-m-1

m=O n=O
I

n = O

Since Q I , ~ ~ (O) = 0, thus

I - 1 l-m-I

Q ~ , i j (z) = n f‘(l- n) I ~ , i (m) (W f j) ’ - ’ - ~
m=O n = O

and in a way similar to the proof of part (b),

1-1

l Q ~ , i j (l) I I E (0.5)”m1~, i(m).

Assume the plant is a BIB0 stable system, and 1 1 , ~ ~ ~ =
max [bi, urnax, ymax], where bI is the bias, and and Umax
are maximum input and output, respectively. Thus we obtain

m=O

1-1

I Q I , i j(l)l I (O-5)1-m1~, max I 11, max
m=O

and

Therefore from (I ~ c) , we obtain

L J n r + h r W l q m a x I I , max. (~ . 5)

Hence, from Theorem 2 and (A.5), (32c) follows. 0

REFERENCES
P. Antsaklis (Eds.), Special Issue on Neural Network in Control Systems,
IEEE Contr. Syst. Mag., vol. 10, no. 3, pp. 3-87, Apr. 1990.
A. Guez and J. Selinsky, “A trainable neuromorphic controller,” J.
Robotic Syst., vol. 5, pp. 364-388, Aug. 1988.
A. Guez and J. Selinsky, “Neurocontroller design via supervised and
unsupervised learning,” J . Intelligent and Robotic Syst., vol. 2, pp.

B. Widrow and F. W. Smith, “Pattern recognizing control systems,”
in Computer and Information Sciences Symp. Proc., Washington, DC,
1964, pp. 288-317.
D. Psaltis, A. Sideris, and A. A. Yamamura, “A multilayered neural net-
work controller,” IEEE Confr. Syst. Mag., vol.8, pp. 17-21, Apr. 1988.
M. S. Lan, “Adaptive control of unknown dynamic systems via neural
network approach,” in Proc. 1989 American Control Conf., Pittsburgh,
June 1989, pp. 910-915.
K. S. Narendra and K. Parthasarathy, “Identification and control of
dynamic systems using neural networks,” IEEE Trans. Neural Networks,
vol. 1, No. 1, pp. 4-27, Mar. 1990.

307-335, 1989.

[8] R. Hoptroff, T. Hall, and R. Burge, “Experiments with a neural con-
troller,” in Proc. IEEE Int. Joint Conf. Neural Networks, Washington,

[9] H. Bleuler, D. Diez, G. Lauber, U. Meyer, and D. Zlatnik, “Nonlinear
neural network control with application example,” in Proc. Int. Conf.
Neural Networks, Paris, 1990, pp. 201-204.

(101 G. J. Wang and D. K. Miu, “Unsupervised adaptive neural network
control of complex mechanical systems,” in Proc. 1991 American
Control Conf., Boston, 1991, pp. 28-29.

[111 R. Jacobs and M. Jordan, “A modular connectionist architecture for
learning piecewise control strategies,” in Proc. 1991 American Control
Conf., Boston, 1991, pp. 1597-1602.

[I21 L. Rabelo and X. Avula, “Hierarchical neurocontroller architecture
for intelligent robotic manipulation,” IEEE Inc. Conf. Robotics and
Automution, Sacramento, CA, 1991, pp. 2656-2661.

[I31 C. C. Ku, K. Y. Lee, and R. M. Edwards, “Neural network for adapting
nuclear power plant control for wide-range operation,” Trans. American
Nuclear Soc., vol. 63, pp. 114-115, June 1991.

[14] D. Rumelhart, G. E. Hmton, and R. J. Williams, “Learning intemal rep-
resentations by error propagation,” in D. Rumelhart and J. McClelland
(Eds.), Parallel Distributed Processing, vol. I . Cambridge, MA: MIT
Press, 1986, pp. 318-362.

[15] J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” in Proc. Nut. Academy of Sciences,
vol. 79, 1982, pp. 25542558.

[I61 A. Lapedes and R. Farkr, “A self-optimizing nonsymmetrical neural
network for content addressable memory and pattern recognition,”
Physica, vol. 22D, pp. 247-259, 1986.

[171 F. J. Pineda, “Generalization of backpropagation to recurrent networks,”
Phys. Rev. Lett., vol. 59, no. 19, pp. 2229-2232, Nov. 1987.

[18] F. J. Pineda, “Recurrent backpropagation and the dynamical approach to
adaptive neural computation,” Neural Computation, vol. 1, pp. 161-172,
1989.

[I91 B. A. Pearlmutter, “Learning state space trajectories in recurrent neural
networks,” Neural Computation, vol. 1, pp. 263-269, 1989.

[20] R. J. Williams and D. Zipser, “A learning algorithm for continually
running fully recurrent neural networks,” Neural Computation, vol. 1,
pp. 270-280, 1989.

[21] L. B. Almeida, “Backpropagation in non-feedforward networks,” in I.
Aleksander (Ed.), Neural Computing Architectures. Cambridge, MA:

[22] L. Ljung, ‘‘Issue in system identification,” IEEE Contr. Syst. Mag., vol.

[23] C. C. Ku and K. Y. Lee, “System identification and control using
diagonal recurrent neural networks,” in Proc. 1992 American Control
Conf., Chicago, June 24-26, 1992, pp. 545-549.

[24] T. Yabuta and T. Yamada, “Learning control using neural networks,” in
Proc. IEEE Int. Conf. Robotics and Automation, Sacramento, CA, Apr.
1991, pp. 740-745.

[25] M. M. Polycarpou and P. A. Ioannou, “’Learning and convergence anal-
ysis of neural-type structured networks,” IEEE Trans. Neural Networks,
vol. 3, no. 1, pp. 39-50, Jan. 1992.

[26] K. S. Narendra and K. Parthasarathy, “Gradient methods for the op-
timization of dynamical systems containing neural networks,” IEEE
Trans. Neural Networks, vol. 2, no. 2, pp. 252-262, Mar. 1991.

[27] F. C. Chen, “Adaptive control of nonlinear systems using neural
networks,” Dept. of Electrical Engineering, Michigan State University,
East Lansing, Ph.D dissertation. 1990.

[28] R. DiGirolamo and S. Donley, “Flight control law synthesis using neural
network theory,” Naval Air Development Center, Warminster, PA, Rept.

Dc, vol. n, 1990, pp. 735-740.

MIT Press, 1989, pp. 75-91.

11, pp. 25-29, Jan. 1991.

NADC-91004-60. 1990.

Chao-Chee Ku (S’90) was born in Taichung, Tai-
wan, on April 27, 1959. He received the B.S. and
M.S. degrees In electrical engineering, from Tatung
Institute of Technology, Taipei, Taiwan, in 1981 and
1983, respectively, and the Ph.D. degree in electrical
and computer engineering at the Pennsylvania State
University, University Park, in 1992.

From 1983 to 1985 he was a Programmer at
the Marine Corps Computer Center for two years
military service. Between 1985 and 1987, he was
a Project Leader at the PROTON Semiconductor

Corp., Taiwan, involving microcontroller chip design. In 1987, he joined
Telecommunication Laboratones, Taiwan, as a Research Assistant in the
Switching Laboratory. Dr. Ku’s areas of interests are intelligent control, VLSI
design, digital signal processing, and neural networks.

Authorized licensed use limited to: Baylor University Libraries. Downloaded on March 08,2021 at 23:26:19 UTC from IEEE Xplore. Restrictions apply.

156 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 1, JANUARY 1995

Kwang Y. Lee (S’70-M’72-SM’86) was born in
Pusan, Korea, on March 6, 1942. He received the
B.S. degree in electrical engineering from Seoul
National University, Seoul, Korea, in 1964, the
M.S. degree in electrical engineering from North
Dakota State University, Fargo, in 1968, and the
Ph.D. degree in system science from Michigan State
University, East Lansing, in 1971.

He has been on the faculties of Michigan State
University, Oregon State University, University of
Houston, and the Pennsylvania State University,

where he is Professor of Electrical Engineering. He is cmnt ly in charge
of the Power Engineering Program and Power Systems Control Laboratory at
Penn State. His interests are system theory, and artificial intelligent, and their
applications to large scale system, and power systems.
Dr. Lee is a registered Professional Engineer.

Authorized licensed use limited to: Baylor University Libraries. Downloaded on March 08,2021 at 23:26:19 UTC from IEEE Xplore. Restrictions apply.

