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Diagonal Recurrent Neural Networks 
for Dynamic Systems Control 

Chao-Chee Ku, Student Member, IEEE, and Kwang Y. Lee, Senior Member, IEEE 

Absmct-A new neural paradigm called diagonal recurrent 
neural network (DRNN) is presented. The architecture of DR" 

network with one hidden layer, and the hidden layer is comprised 

system, one as an identifier called diagonal recurrent neuroidenti- however, the feedforward network is a Static mapping and 
fier (DRNI) and the other as a controller called diagonal recurrent without the aid of tapped delays it does not represent a 

the last three decades, and many promising results are reported 
[4]-[ 131. Most people used the feedforward neural network 

is a modified model of the connected recurrent 

of self-recurrent neurons. %o ~ ~ " 9 s  am utilized in a control 

(f?"), combined with tapped delays, and the backpropagation 
training algorithm to solve the dynamical problems; 

_ -  
neurocontroller (DRNC). A controlled plant is identified by the 
DRNI, which then provides the sensitivity information of the 
plant to the DRNC. A generalized dynamic backpropagation 
algorithm (DBp) is developed and both DRNC and 
DRNI. Due to the recurrence, the DR" can capture the dynamic 

dynamic system mapping. On the-other hand. recurrlnt neural 
networks [15]-[191 have important capabilities not found in 
feedforward networks, such as attractor dynamics and the 
ability to Store information for later Use. Of particular interest 

to 

behavior of a system. To guarantee convergence and for faster 
learning, an approach that uses adaptive learning rates is devel- 
oped by introducing a Lyapunov function. Convergence theorems 
for the adaptive backpropagation algorithms are developed for 
both DRNI and DRNC. The proposed DRNN paradigm is applied 
to numerical problems and the simulation results are included. 

I. INTRODUCTION 

S Antsaklis [ l ]  pointed out, the development in the A control area has been fueled by three major needs: the 
need to deal with increasingly complex systems, the need 
to accomplish increasingly demanding design requirements, 
and the need to attain these requirements with less precise 
advanced knowledge of the plant and its environment. Increas- 
ingly complex dynamical systems with significant uncertainty 
have forced system designers to tum away from conventional 
control methods. However, the fundamental shortcomings of 
current adaptive control techniques [2 ] ,  such as nonlinear con- 
trol laws which are difficult to derive, geometrically increasing 
complexity with the number of unknown parameters, and the 
general unsuitability for real time applications have compelled 
researchers to look for solutions elsewhere. 

The massive parallelism, natural fault tolerance and implicit 
programming of neural network computing architectures sug- 
gest that they may be good candidates for implementing real- 
time adaptive controllers for large-scale nonlinear dynamic 
systems [3]. Several neural network models and neural leam- 
ing schemes were applied to system controller design during 
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is their ability to deal with time-varying input or output 
through their own natural temporal operation [20]. Thus the 
recurrent neural network (RNN) is a dynamic mapping and 
is better suited for dynamical systems than the feedforward 
network. 

Almeida [21] pointed out that one should not expect a 
major increase in the performance of a perceptron in every 
situation, just by "throwing in" feedback. In most cases, the 
best network structure will probably tum out to have feedback 
only in a smaller group of units. Ljung [22] also mentioned 
that, for system identification, the identifier must be chosen to 
have a small number of parameters, i.e., fewer weights for our 
neural network model. This is because the more parameters we 
use, the higher is the random influence on the model. Since 
a recurrent neuron already has an intemal feedback loop, it 
captures the dynamic response of a system without extemal 
feedback through tapped delays; thus the network model 
can be simplified. In most control applications, the real-time 
implementation is very important, and thus the neurocontroller 
also needs to be designed such that it converges with a 
relatively small number of training cycles. 

With the objective of a simple recurrent network and a 
shorter training time for the neural network model, a diagonal 
recurrent neural network (DR"), as shown in Fig. l(b), is 
developed. It can be shown that the DRNN model is a dynamic 
mapping in a way the fully connected recurrent neural network 
(FR") shown in Fig. l(c) is dynamic. Since there is no 
interlinks among neurons in the hidden layer, the DRNN has 
considerably fewer weights than the FRNN and the network 
is simplified considerably. 

This paper is organized as follows. In Section 11, a DRNN 
model is developed. Also, the comparison of DRNN, F", 
and FRNN in terms of their total number of weights, U0 
mapping characteristics. Then a dynamic backpropagation 
training algorithm is developed to train a DRNN based control 
system. In Section 111, the convergence of the DRNN based 
system is investigated, and an analytic method based on the 
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(C) 

Fig. 1. Three different neural network architectures. (a) Feedforward neural 
network. (b) Diagonal recurrent neural network. (c) Fully connected recurrent 
neural network. 

Lyapunov function is proposed to find the adaptive learning 
rates for the DRNN. Some simulations are conducted in Sec- 
tion IV. In the simulations, the bounded input bounded output 
(BIBO) nonlinear plant control, the on-line adapting ability of 
DRNN based control system, the non-BIB0 nonlinear plant, 
the tolerance to disturbances, and the interpolation ability of 
the DRNN based control system are investigated. 

11. DIAGONAL RECURRENT NEURAL NETWORKS 

Consider Fig. 1, where for each discrete time k ,  & ( k )  is the 
zth input, Sj ( k )  is the sum of inputs to the jth recurrent neuron, 
X j ( k )  is the output of the j th recurrent neuron, and O ( k )  is 
the output of the network. Depending on the network, W', 
WO, W D ,  or W H  represents input, output, diagonal, or hidden 
weight vectors, respectively. In this section the characteristics 
of D R " ,  F", and FR" shown in Fig. 1 are compared. 
Then the application of DRNN in control is developed, which 
includes developing the training algorithm for the DRNI and 
DRNC and finding the bounds of the learning rates such that 
the convergence of DRNN based control system is guaranteed. 

A.  The Comparison of D R " ,  FNN, and FRNN 
Definition 1: An ordered tuple NT = {IP, HY, 0') repre- 

sents a T-type neural network with p inputs (P), q sigmoid 
neurons in the hidden layer (HY) ,  and T linear neurons in 
the output layer (Or) ;  N F ,  N D ,  and N R  represent the 
feedforward, diagonal recurrent, and fully connected recurrent 
neural networks, respectively. 

Definition 2: The variable GT represents the total number 
of weights for a 7'-type neural network, where the symbol of 
type T is same as defined in Definition 1. 

Lemma 1:  The total number of weights (including q bias 
weights), for the N F ,  N D ,  and N R  neural networks are 

(1) 

(2) 

GF = ( p  + T + l ) q  

GD = ( p  + T + 2)q 

GR = ( p  + T + l ) q  + y2 (3) 
where variables are defined in Definitions 1 and 2. 

Remark 1: If p = 4, q = 9, and T = 1, then GF = 54, 
GD = 63, and GR = 135. In this small neural network case, 
the number of weights of FRNN is about twice the number of 
weights of DRNN. The increase in the number of weights from 
DRNN to FRNN is A = q(q - l), which is 72 in the example. 

Lemma 2: Define the U0 mapping, M :  I" + On, and 
O F ,  O D ,  and OR be the outputs of N F .  N D ,  and N R ,  
respectively. If we assume m = 3, n = 1, and I 3  = 

(4) 

(5 ) 

(6)  

{ r (k ) ,  Y(k), 4k)). Then 

Q F ( k )  = Q ; ( T ( ~ ) ,  ~ ( k ) ,  4 k ) )  

OD@) = Q%-(l), Y U ) ,  4 1 ) ;  15 k )  

OR(k )  = Q Z ( 4 ,  ~ ( l ) ,  4 l ) ;  1 5 k )  
where QN(. )  is a nonlinear function, and 1 and k are non- 
negative integers. 

Proofi a) From Fig. l(a), we obtain 

where fN(.> is a sigmoid function. Then for input vector I 3  
assumed, it can be shown that the above equation can be 
written as 

O F ( k )  = Q E ( l , ( k ) ,  i = I ,  2 , .  . , m) 
= Q E ( r ( k ) ,  ~ ( k ) ,  4 k ) )  

where Q K ( . )  is a nonlinear function, which represents a static 
mapping neural network. 

b) From Fig. l(b), we obtain 
n m 

oD(k) = Cw:fN + wyx~(k - 1) 
j = 1  

= j=1 2W:fN (ewLIz(k) a = 1  + WYfN 
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where Q$(.) is a nonlinear function. Since this includes all 
previous inputs, it represents a nonlinear dynamic mapping 
neural network. 

c) From Fig. l(c), we obtain 
n / m  n 

where &$(.) is a nonlinear function, and it also represents a 
nonlinear dynamic mapping neural network. This completes 

0 
Remark2: Lemma 2 shows that N F  is a static mapping, 

but both N D  and N R  are dynamic mappings. The difference 
between N D  and N R  is that N R  has more weights than N D ;  
thus N R  has more degrees of freedom to represent the output 
function. In the sense of memory capacity, N R  has more 
memory space than N”,  and thus both networks are very 
much different for associative memory purpose. However, N” 
is much simpler in structure compared to N R .  

the proof of Lemma 2. 

B .  Diagonal Recurrent Neural Networks Based Control System 

An approach for control and system identification using 
diagonal recurrent neural networks (DRNN) [23] is presented 
in this section. An unknown plant is identified by a system 
identifier, called the diagonal recurrent neuroidentifier (DRNI), 
which provides information about the plant to a controller, 
called the diagonal recurrent neurocontroller (DRNC). The 
neurocontroller is used to drive the unknown dynamic sys- 
tem such that the error between plant and desired output 
is minimized. A generalized algorithm, called the dynamic 
backpropagation (DBP), is developed to train both DRNC 
and DRNI. For simplicity, the plant is assumed to be single 
input/single output system. 

Both DRNI and DRNC use the same D R ”  architecture 
shown in Fig. l(b), which has only one hidden layer with 
sigmoid type recurrent neurons. The block diagram of the 
D R ”  based control system is shown in Fig. 2. The inputs 
to the DRNC are the reference input, the previous plant 
output, and the previous control signal, and the output of the 
DRNC is the control signal to the plant. By using the dynamic 
backpropagation (DBP) algorithm developed in this paper, the 
weights of the DRNC are adjusted such that the error between 
the output of the plant and the desired output from a reference 
model approaches a small value after some training cycIes. 
When the DRNC is in training, the information on the plant 
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Y(k ~ 1) 

Fig. 2. Block diagram of D R ”  based control system. 

is needed. Since the plant is normally unknown, the DRNI is 
used to estimate the plant sensitivity yu for the DRNC. 

The current control signal generated from the DRNC and 
previous output of the plant are used as the inputs to the 
DRNI. The error between the output of the DRNI and plant is 
computed for each iteration, and is used to adjust the weights 
of the DRNI. By training the DRNI and DRNC altemately, 
the weights of the DRNC can be adjusted more effectively. 

C .  Dynamic Backpropagation Algorithm for 
Diagonal Recurrent Neural Networks 

shown below: 
The mathematical model for the DRNN in Fig. l(b) is 

O ( k )  = c q - j ( k , ,  Xj(k) = f ( S j ( k ) >  (7) 
j 

where for each discrete time k, & ( k )  is the ith input to the 
DRNN, S j ( k )  is the sum of inputs to the jth recurrent neuron, 
X j ( k )  is the output of the jth recurrent neuron, and O ( k )  is the 
output of the D R ” .  Here f(.) is the usual sigmoid function, 
and W’, W”, and W O  are input, recurrent, and output weight 
vectors, respectively, in R”. , Rnd , and Rnc-. 

Let yr(k) and y(k) be the desired and actual responses of 
the plant, then an error function for a training cycle for DRNC 
can be defined as 

1 
E, = T(Y,(k) - Y(k)?. (9) 

In general, the plant response is a nonlinear mapping G ( . )  
of input u ( k ) ,  i.e., y(k) = G(u(Z), i 5 k ) .  Here, the plant 
input u ( k )  is the output of the DRNC, i.e., u ( k )  = O ( k )  in 
(7). On the other hand, in the case of the DRNI, the plant 
input u(k)  is the input to the DRNI. 

The error function (9) is also modified for the DRNI by 
replacing y,(k) and y(k) with y(k) and ym(k), respectively, 
where ym(k )  is the output of the DRNI, i.e., 

(10) 
1 

Em = 2(Y(k) - Ym(k)>2 
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where y,(k) = O(k)  of (7). 

weight vector W E R” is represented by 

and 

3- a s . ( k )  - X,(k - 1) + wj” d X j ( k  - 1) The gradient of error in (9) with respect to an arbitrary 

dWj” awj” 
which lead to (14a). 

The procedure of deriving the gradient with respect to 
input weight is similar to the above derivation, and the 

~ aEC = - ec (k ) -  aY(k) = - e c ( k ) y u ( k ) -  W k )  
aw aw aW 

(11) - ao(k> 
- -ec(k)yu(k)- aW 

where e,(k) = y,(k) - y(k) is the error between the desired 
and output responses of the plant, and the factor y,(k) E 

d y ( k ) / d u ( k )  represents the sensitivity of the plant with respect 
to its input. 

Since the plant is normally unknown, the sensitivity needs 
to be estimated for the DRNC. However, in the case of the 
DRNI, the gradient of error in (10) simply becomes 

where e,(k) = y(k) - ym(k) is the error between the plant 
and the DRNI responses. 

The output gradient a O ( k ) / a W  is common in (11) and 
(12) and needs to be computed for both DRNC and DRNI. Its 
computation is summarized in the following lemma: 

Lemmu3: Given the DRNN shown in Fig. l(b) and de- 
scribed by (7) and (P), the output gradients with respect to 
output, recurrent, and input weights, respectively, are given by 

where Pj(k)  = a X j ( k ) / a W j ”  and Qij  = a X j ( k ) / a W $  and 
satisfy 

P,(k) = f ‘ ( S j ) ( X j ( k  - 1) + WjDPj(k - l)), 

Pj(0) = 0 (144 

Qij (k)  = f ‘ ( s j ) ( I i ( k )  + WjDQij(k - I)) ,  Q;j(O) = 0. 
( 14b) 

Proof: From (7), the gradient with respect to the output 
weight is found as 

Again, from (7), the gradient with respect to the recurrent 
weight is 

From (7) and (P), 
ax, ( I C )  - ax, ( k )  as, ( k )  

corresponding equations, (13c) and (14b), follow. 0 
Remurk.3: Equations (14a) and (14b) are nonlinear dy- 

namic recursive equations for the state gradients ax, ( k ) / a W ,  
and can be solved recursively with given initial conditions. 
For the usual F”, the recurrent weight W y  is zero and the 
equations become algebraic. 

1 )  Dynamic backpropagation for DRNI: From (12), the 
negative gradient of the error with respect to a weight vector 
in R” is 

where the output gradient is given by (13) and (14), and 
w represents W O ,  W D ,  or W’ in ~ ~ 0 ,   d. or ~ n , ,  

respectively. 
The weights can now be adjusted following a gradient 

method, i.e., the update rule of the weights becomes 

W ( n  + 1) = W ( n )  + 9 -~ ( E:) 
where 9 is a learning rate. The equations (13)-(16) define the 
dynamic backpropagation algorithm (DBP) for DRNI. 

2) Dynamic Backpropagation for DRNC: In the case of 
DRNC, from (1 I), the negative gradient of the error with 
respect to a weight vector in R” is 

Since the plant is normally unknown, the sensitivity term 
y,(k) is unknown. This unknown value can be estimated by 
using the DRNI. When the DRNI is trained, the dynamic 
behavior of the DRNI is close to the unknown plant, i.e., 
y(k) z y,(k), where y,(k) is the output of the DRNI. 

Once the training process is done, we assume the sensitivity 
can be approximated as 

where u(k) is an input to the DRNI. 
Applying the chain rule to (18), and noting that y m ( k )  = 

O ( k )  of (71, 

dYlm(k) - - a o ( k )  
a u ( k )  d u ( k )  ax, d u ( k )  

-=E-- dO(k)  d X j ( k )  

Also from (7), 
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Since inputs to the DRNI are u ( k )  and y(k - 1) from Fig. 2, 
(8) becomes 

S j ( k )  = WjDXj(k - 1 )  + W[ju(k) + W,'jy(k - 1) + Wij61 
(21) 

where bI is the bias for DRNI. 
Thus 

From (19), (20), and (22), 

where the variables and weights are those found in DRNI. 
Using the negative gradients in (17), the weights for DRNC 

can now be adjusted using the update rule similar to (16). The 
equations (13), (14), (16), (17), and (23) define the dynamic 
backpropagation algorithm for DRNC. 

111. CONVERGENCE AND STABILITY 

The update rule of (16) calls for a proper choice of the 
learning rate 7. For a small value of 71 the convergence is 
guaranteed but the speed is very slow; on the other hand if 
71 is too big, the algorithm becomes unstable. This section 
develops a guideline in selecting the learning rate properly, 
which leads to adaptive learning rate. 

A discrete-type Lyapunov function can be given by 

(24) 
1 
2 

~ ( k )  = - e 2 ( k )  

where e ( k )  represents the error in the learning process. 

training process is obtained by 
Thus, the change of the Lyapunov h c t i o n  due to the 

1 
2 AV(k) = V ( k  + 1) - V ( k )  = - [ e2 (k  + 1) - e 2 ( k ) ] .  (25) 

The error difference due to the learning can be represented 
by ~ 4 1  

e ( k  + 1) = e ( k )  + Ae(k) = e ( k )  + - (26) 

where AW represents a change in an arbitrary weight vector 
in 72". . 

A .  Convergence of DRNI 
From the update rule of (12) and (16), 

where WI and 711, respectively, represent an arbitrary weight 
and the corresponding learning rate in DRNI, and O ( k )  is 
the output of DRNI. Then we have the following general 
convergence theorem: 
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Theorem 1 :  Let q I  be the learning rate for the weights 
of DRNI and 91, be defined as gI, m a :  = maxk 11gr(k)ll, 
where g I ( k )  = a O ( k ) / a W ~ ,  and 1 1  . 1) is the usual Euclidean 
norm in R". Then the convergence is guaranteed if V I  is 
chosen as 

(28) 
2 

S I ,  max 
0 < 7 / 1 < 7 .  

Proof: From (25)-(27), AV(k) can be represented as 

e m ( k )  + ~ A e , ( k ) ]  1 

Since for DRNI ae,(k)/aWI = -aO(k) /dW~,  we obtain 

From (31), we obtain 0 < v1 < 2, and (28) follows. 17 
Remark 4:  The convergence is guaranteed as long as (31) 

is satisfied, i.e., 

or 

This implies that any 771, 0 < < 2, guarantees the conver- 
gence. However, the maximum learning rate which guarantees 
the most rapid or optimal convergence is corresponding to 
q1 = 1, i.e., 

which is the half of the upper limit in (28). 

larger than 71; does not guarantee the faster convergence. 

the specific convergence criterion for each type of weights: 

This shows an interesting result that any other learning rate 

The general convergence theorem can now be applied to find 

Authorized licensed use limited to: Baylor University Libraries. Downloaded on March 08,2021 at 23:26:19 UTC from IEEE Xplore.  Restrictions apply. 



KU AND LEE: DIAGONAL RECURRENT NEURAL NETWORKS I49 

Theorem 2: Let $, $, and qf be the learning rates for 
the DRNI weights Wy, Wp,  and W;, respectively. Then 

Proofi From (25), (26), (27) and (33), AV(k)  can be 
represented as 

the dynamic backpropagation algorithm converges if 0 < 
IWtjI < 1, j = 1, 2 , . . . ,  hr, and the learning rates are 
chosen as 

where h1 is the number of recurrent neurons in the hidden 
layer, n r  is the number of inputs to the DRNI, Wzmax:= 
makllW?(k)ll, l I , m a x : =  maxk I l I~(k) l l ,  and II . II is the 
sup-norm. 

Proof: a) From (13a), 

where X' = [X:, Xi,. . . , X i I ] * ,  and Xj' is the output value 
of the j th neuron in the hidden layer, and h l  is the number of 
recurrent neurons in the DRNI hidden layer. 

Since 0 < Xj' < 1, j = 1, 2 , . . . ,  h1, by the definition 
of the usual Euclidean norm in Rhl ,  IlgI(k)ll < fi and 
93, max = hl. Then from Theorem 1, (32a) follows. 

0 b) and c) See the Appendix. 

B. Convergence of DRNC 
From the update rule of (16) and (17), 

(33) 

where ay(k)/du(k) = yu(k) is the plant sensitivity, W, 
and v,, respectively, represent an arbitrary weight and the 
corresponding leaming rate in DRNC, and O ( k )  is the output 
of DRNC. Then we have the following general convergence 
theorem: 

Theorem 3: Let vc be the leaming rate for 
the weights of DRNC and be defined as 

and Smax = hJW,, ,,,W,, max/2. Then the convergence is 
guaranteed if vc is chosen as 

gc, max:= maxli llg(k)ll, 'where g c ( k )  a o ( k ) / a J K ,  

'3 

Comparing (34) with (30), it can be seen that both con- 
ditions are similar, except the sensitivity yu(k) needs to be 
incorporated in the DRNC. Therefore, it remains to find the 
limit on yu(k) or y:(k). 

Since, from (23), 

Yu(k) = ~ W f j f V J W :  13 
j 

where Smax is the limit on sensitivity. Thus following the 
proof of Theorem 1, we obtain 

(35) 
2 

o < v c <  
Skaxgc2, max 

where gc, max: = maxk llgc(k)ll, and gc(k) = ao(k)/awc. 0 
Remark 5 :  As in the case of DRNI, the optimal conver- 

gence rate is 

* 1 

which is the half of the upper limit in (35). Again, any other 
leaming rate larger than 7; does not guarantee the faster 
convergence. 

Thus, in a way similar to DRNI, the specific convergence 
criteria can be found as following: 
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Theorem 4 :  Let r f ,  7/,D, and 17,' be the learning rates for 
the DRNC weights W,", W,", and W!, respectively. Then 
the dynamic backpropagation algorithm converges if 0 < 
IWFj I < 1, j = 1, 2 , .  . . , h,, and the learning rates are chosen 
as 

where h, is the number of recurrent neurons in the 
hidden layer, n, is the number of inputs to the DRNC, 
Wzmax: = maxk IlW,O(k)ll, L, max:  = maxk IIL(k)lll and 
L(k) = {b, u(k - 11, Y(k - 1)). 

Proof. From Theorem 3, if we redefine 6, = T ~ S $ ~ ~ ,  
then we obtain 

(37) 
2 

gc, max 
0 < 7 j , < r  

which is the same form as (28) in Theorem 1 for DRNI. 
Note that both DRNI and DRNC have the same D R "  

architecture, and gI, and g,, max are defined in the same 
way in terms of aO(k)/aW. Therefore Theorem 2 is valid 
for 6, for all three types of weights, i.e., 

IV. SIMULATION RESULTS 

The DRNC and DRNI are tested for five different examples. 
The numbers of inputs to DRNC and DRNI are denoted by 
nc and nx, respectively, and h, and hr denote the numbers of 
neurons in the hidden layer for DRNC and DRNI, respectively, 
and are chosen as h, = 2n, + 1, hx = 2n1+ 1. 

In the simulation study, P, and PI are the inputs to the 
DRNC and DRNI, respectively; NT and WT are the total 
number of neurons and weights in the system (both DRNC 
and DRNI), respectively; 77, and 771 are the initial learning rate 
for the DRNC and DRNI, respectively; and b,, and bx are the 
biases for the DRNC and DRNI, respectively. It can be verified 
that NT = h, + hx + 2, and WT = (n, + 3)hc + ( nx + 3)hr. 

Example I :  A BIB0 Nonlinear Plant [26]: In this case the 
plant is described by the difference equation 

y(k + 1)  = - y(k) + u3(k) 
1 + Y2(k) 

and a reference model is described by the difference equation 

y,(k + 1) = 0.6y,(k) + r ( k )  

where r(k) = sin (27rk/25)+sin (2rk / lO) .  The objective is to 
determine an input u ( k )  to the plant such that limk,, ly(k) - 
y,(k)l < E, where E is a suitably chosen constant. In this 
simulation study, P, = {.(IC), u(k - l) ,  y(k - 1))  and 

WT = 67. In [26], however, a two-hidden layer feedforward 
neural network with NT = 31 and WT = 281 is used, i.e., 
more than two times for the number of neurons and four times 
for the number of weights compared to the DRNC and DRNI 
combined. 

Adaptive learning rates were used starting from the initial 
rates of 17, = 0.1 and 771 = 0.1. Both learning rates are adjusted 
according to the criteria developed in Section 111, and the 
adaptive learning rates of the DRNI and DRNC are shown 
in Fig. 3(a) and (b), respectively. As can be seen in Fig. 3(a) 
and (b), the learning rates adapt to reduce the tracking error. 
The learning rates for DRNI, #, $, and v;, after 60 training 
epochs are adjusted to 0.04,0.0012, and 0.00012, respectively, 
whereas the learning rates for DRNC, $, T:, and q:, after 60 
training epochs to 0.0019,0.0035, and 0.000354, respectively. 
The average errors for the cases of adaptive learning rates 
and the different values of fixed learning rates are shown in 
Fig. 3(c). As can be seen in the figure, the adaptive learning 
rate scheme is stable and converges much faster. The result 
after 60 training epochs (one epoch is equal to 50 time steps 
in this example) is shown in Fig. 3(d). In [26], however, the 
total of 100 000 training time steps were required, which is 30 
times more than this result. 

Example 2: The On-Line Adapting Abilio of DRNN Based 
Control System: In this simulation study, all conditions are 
same as in Example 1, except the reference input, .(IC), is 
changed in order to observe the adapting ability of the DRNN 
based control systems. 

After the system in Example 1 is trained 60 epochs, the ref- 
erence input, r ( k ) ,  is changed to become r ( k )  = sin ( 2 ~ k / 2 5 ) ,  
and the result is shown in Fig. 4(a). This figure shows that 
the DRNN based control system can catch the new reference 
model quickly. When the new reference input r ( k )  is changed 
to become a square wave with amplitude equal to 2, the 
simulation result is shown in Fig. 4(b). After about 6 epochs, 
the DRNN based control system catches the new reference 
model. These results show the on-line adapting ability of the 
proposed DRNN based model. 

Example 3: The Recovering Ability from Disturbances: The 
same plant and reference models of Example 1 are used in this 
example. Both initial learning rates, v,, and 91, are chosen to 
be 0.1, and both biases, b, and bx,  are equal to 1.0. After 
the DRNN's are trained already (i.e., after 60 epochs), a 
disturbance ~ ( k )  is applied to the plant output during the 61th 
and 62th epochs. 

PI = { ~ ( k ) ,  ~ ( k  - l)}, thus nC = 3, 71.1 = 2, NT = 14, and 
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Fig. 3. Example 1: BIB0 nonlinear plant control. (a) Adaptive leaming rates of DRNI; 77 (solid line). q p  (dotted line), and 7; (dashed line). (b) Adaptive 
leaming rates of DRNC; 7: (solid line), T$ (dotted line), and qf (dashed line). (c) Average errors for the cases of the adaptive leaming rates and the different 
values of fixed leaming rates; adaptive leaming rate (dotted line), fixed leaming rate with q1 = qc = 0.1 (solid line), and fixed leaming rate with 171 = 0.01 
and qC = 0.1 (dashed line). (d) Outputs of reference model (solid line) and the plant (dotted line) after 60 training epochs. 

In case 1, w(k) = 1.0 is applied to the plant output at the 
61th and 62th epochs. In this case, the DR"-based control 
system can recover from the disturbance quickly after about 4 
epochs, as shown in Fig. 5(a). In case 2, w(k) = 5.0 is applied 
to the plant output at the 61th and 62th epochs. The DR" 
based control system can recover from the disturbance after 
about 10 epochs, as shown in Fig. 5(b). When w(k) = 10.0 
is applied, the DRNN based control system can still recover 
from the disturbance; however, it takes a longer time. 

Example 4: A Non-BIB0 Nonlinear Plant: The model ref- 
erence control problem for a nonlinear plant with linear input 
is considered below. 

Reference model: 

y r ( k  + 1) = O.GyT(k) + ~ ( k )  
where r (k )  = p sin (27rk/100). 

Plant model: 

y(k + 1) = 0.2y2(k) + 0.2y(k - 1) 
+ 0.4 sin [0.5(y(k) + y(k - l))] 
.COS [0.5(y(k) + ~ ( k  - l))] + 1.24k).  

The plant is unstable in the sense that given a sequence 
of uniformly bounded controls { ~ ( k ) } ,  the plant output may 
diverge. The plant output diverges when the step input U( k )  = 
0.83, Vk 2 0, is applied to the plant [27]. Thus in order 
to guarantee the stability of the control system, the control 
signal, u ( k ) ,  if a uniformly step input is to be applied, 
must be less than 0.83. When a step input u ( k )  < 0.83 
is applied to the plant, the maximum possible plant output 
becomes gmax M 2.26. On the other hand, it can be seen 
that the maximum reference output that the reference model 
can generate is yr, max M qp, and this should not exceed the 
maximum allowed plant output yma. This implies that the 
reference signal needs to be restricted by p 5 0.9. 

In this simulation study, P, = { ~ ( k ) ,  u(k - l), y(k - l)} 
and PI = { u ( k ) ,  y(k - 1)); thus n, = 3, n1 = 2, NT = 
14, and WT = 67. In [27], however, a two-hidden layer 
feedforward neural network with NT = 21 and WT = 140 
is used. First, p = 0.2 is used. Both initial leaming rates, 
vc and 771, are chosen to be 2.0, and both biases, 6 ,  and br, 
are chosen to be 1.0. The tracking process during the 70th 
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Fig. 4. Example 2: On-line adapting ability of the D R "  based control 
system. (a) Outputs of reference model (solid line) and the plant (dotted line). 
(b) Outputs of reference model (solid line) and the plant (dotted line). 

to the 75th training epochs is shown in Fig. 6(a), and the 
simulation result during the 96th to the 100th epochs is shown 
in Fig. 6(b), which shows that the DRNC controls this plant 
very well. When p = 1.0 is used, since the control signal is 
not a uniform step input, this control system is still stable. 
However, since ymax < yr, max, a sustained error exists. 

One interesting observation is the control signal, u(lc). For 
,8 = 0.2, the control signal shown in Fig. 6(c), is much less 
than 0.83. This implies that the controller adapts itself in such 
a way that the plant will not be out of bound. However, as the 
value of p increases, the control signal u ( k )  also increases. 
When p > 1.0 is used, a larger y,.,max is obtained. In order 
to track this increased reference output, the control signal 
~ ( k )  needs to be increased. However, when the control signal 
is getting larger, exceeding 0.83 for a sustained period, the 
plant becomes unstable. Another observation is on the plant 
sensitivity. When the output goes through a large transient, the 
sensitivity y,(k) increases, as shown in Fig. 6(d). Therefore, 
the weight changes become larger and the controller can 
capture the dynamic behavior of the plant quickly. 

60 61 62 63 64 65 66 

Epochs 

(a) 

1 0 7  

Fig. 5. Example 3: Recovering ability from disturbances. (a) Outputs of 
reference model (solid line) and the plant (dotted line) when the disturbance 
is 1.0. (b) Outputs of reference model (solid line) and the plant (dotted line) 
when the disturbance is 5.0. 

Example 5:  The Interpolation Ability of the DR" Based 
Control System: Flight control is a very complex task; thus 
a sophisticated control skill is needed. In this example, the 
interpolation ability of the D R "  based control system is 
demonstrated via a flight control application. During the 
training process, only few trim points are trained. After few 
training epochs, an untrained trim point is applied and tested 
in the DRNN based control system. 

For initial study, a simplified second-order linear plant 
model is assumed for a typical flight dynamic subsystem. An 
objective of the flight controller is to maneuver the plant so 
that it will follow a reference response generated by a reference 
model. The assumed reference and plant models are given 
below: 

Reference model: 
4.0 

s2 + 2.82s + 4.0' 
H ( s )  = 

Plant model: 
1.0 H ( s )  = 

s2 + 2.09 + 1.0' 
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Fig. 6. Example 4: Non-BIB0 nonlinear plant control. (a) Outputs of reference model (solid line) and the plant (dotted line) when /3 = 0.2. (b) 
Outputs of reference model (solid line) and the plant (dotted line), from 96 to 100 epochs. (c) Control signal generated from DRNC (p = 0.2)-. 
(d) Sensitivity generated from DRNI (p = 0.2). 

For this second-order system [28] ,  z ~ ( t )  and ~ ( t )  are 
chosen as the state variables, r( t )  is the input to the reference 
model, and ~ ( t )  and y ( t )  are input and output of the plant, 
respectively. Here, the speed can be measured, i.e., ~ ( t )  is 
available, q ( t )  = y ( t ) ,  and k l ( t )  = ~ ( t ) .  The step input 
is applied to the reference model. Here, P, = { ~ ( t ) ,  y ( t  - 

nc = 3 and n I  = 3. Also, NT = 16 and WT = 84. Here, 
three sets of initial conditions for ( q ( O ) ,  zz(O)),  (0.0, 0.0), 
(0.1, 0.3), and (0.5,  0.75), are selected as training seb. After 
the neural networks were trained, a testing set is applied to the 
system. In this simulation, (z1(0), z2(0)) = (0.8, 1.0) is the 
testing set. Both initial learning rates, 7, and 771, are equal to 
2.0, and both biases, b, and b1, are equal to 1.0. 

After 10 training epochs or cycles, the error converges to a 
small value. The error is shown in Fig. 7(a), and the outputs 
of the reference model (yr) and plant (y) after 200 training 
epochs are shown in Fig. 7(b). It is observed that there is 
an oscillation in Fig. 7(a). This is because three different 
training sets are used sequentially. The neural networks must 

l), zz(t - l)}, and PI = { ~ ( t ) ,  y ( t  - l), zz(t - 1)); thus 

be adjusted such that the error will be minimum for all training 
sets. When a testing set, which is different but close to a 
training set is used, the result is very good as can be seen 
in Fig. 7(b). This implies that the neural network has the 
interpolation ability if an untrained set is close to a trained 
set. 

V. CONCLUSION 

This paper described the diagonal recurrent neural network 
(DR") based control architecture, which includes the di- 
agonal recurrent neurocontroller (DRNC) and neuroidentifier 
(DRNI). The proposed model is compared with the feedfor- 
ward neural network (F") and the fully connected recurrent 
neural network (FR")  in terms of number of required 
weights and mapping characteristics. The DRNN model is 
shown to have dynamic mapping characteristic. Moreover, it 
requires fewer weights when compared with the FRNN model. 
The above features allow the DRNN model to be used for 
on-line applications. 
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Fig. 7. Example 5: Interpolation ability of the D R "  based control system. 
(a) Average error. (b) Outputs of reference model (y,.: solid line) and plant 
(y: dotted line). 

In a neural network based control system, the plant is 
unknown in general; thus the sensitivity, which is required 
during training process, is normally not available. Many people 
simply ignore this sensitivity and use the direct contiol ap- 
proach, whereas others use the simple method of sign changes 
in the plant response as the sensitivity. However, in this 
paper, a neuroidentifier is utilized to obtain the sensitivity, and 
along with the neurocontroller the weight adjustment becomes 
smoother than the case without the sensitivity information. 

The convergence of a recurrent neural network is not easy 
to be guaranteed. Needless to say, when an unknown plant is 
combined with the neural network, it makes the convergence 
of neural network based system even more difficult. A large 
learning rate may make the system unstable while a small 
learning rate makes the training process too slow. An approach 
to find the bounds on learning rates based on the Lyapunov 
function is developed. The use of adaptive learning rates guar- 
antees convergence, and the optimal learning rates are found. 

The simulations of the proposed model are conducted for 
both BIB0 and non-BIB0 nonlinear plant control problems. 

The D R "  based control system is tested for its on-line 
adapting ability, recovering ability from disturbances, and 
the interpolation ability. The results show that the D R "  
based control system is very promising for future real-time 
applications. 

APPENDIX 
PROOF OF THEOREM 3(B) AND (C )  

Proof of Part (b): We denote i 3 X j ( k ) / a W f j  = 
P~,j(k), then from (14a) 

PI&) = f'(k)(Xj(k - 1) + W[jPI , j@ - 1)) 

where f ' ( lc)  E f'(Sj(k)). Thus the solution of the above 
equation can be written as 

1-1 I-m-1 

PI,j(E) = n f'(l- n)xj(m)(W&)l-l-m 
m=O n = O  

I 

n=l 

Since P ~ , j ( o )  = 0, thus we obtain 
1-1 l-m-1 

P I , j ( l )  = n f' ( l -  4xj(m)(w&)l-1-m, 
m=O n=O 

j = 1, 2;. . ,hr.  

Since 0 < f'(Sj) < 0.5, 0 < Xj(m) < 1, and 0 < WF < 1 
for j = 1, 2 , . . . ,  hr, thus 

1-1 l-m-1 

IPI>j(U I n If'@ - .>I IXAm>l lW?jll-m-l 
m=O n = O  

and 
1-1  

m=O 

Let T = 1 - m - 1. Then 
1-1  00 

If'~,j(l)l 5 z(O.5)"'' I 0.5c(0.5)' = 1, 

From (13b), we obtain 

where IlW?(k)J(:= maxjIWfj(k)l. Thus for the output gra- 
dient vector in Rhr, 
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Again we define WFm,: = maxkIIWy(k)(I. Then we obtain 

(A.3) 

Hence, from Theorem 2 and (A.3), (32b) follows. 

& I ,  i j ( k ) .  Then from (14b), 

0 
Proof of Part (c): We denote ax,( k)/dW/, ij = 

Q I ,  i j ( k )  = f’(k)(I~,i(k) + W ~ ~ Q I ,  i j (k - 1)). 
Again, 

1-1 1-m-1 

m=O n=O 
I 

n = O  

Since Q I , ~ ~ ( O )  = 0, thus 

I - 1  l-m-I 

Q ~ , i j ( z )  = n f‘(l- n ) I ~ , i ( m ) ( W f j ) ’ - ’ - ~  
m=O n = O  

and in a way similar to the proof of part (b), 

1-1 

l Q ~ , i j ( l ) I  I E (0.5)”m1~, i(m).  

Assume the plant is a BIB0 stable system, and 1 1 , ~ ~ ~  = 
max [bi, urnax, ymax], where bI is the bias, and and Umax 
are maximum input and output, respectively. Thus we obtain 

m=O 

1-1 

I Q I ,  i j(l)l I (O-5)1-m1~, max I 11, max 
m=O 

and 

Therefore from ( I ~ c ) ,  we obtain 

L J n r + h r W l q m a x I I ,  max. ( ~ . 5 )  

Hence, from Theorem 2 and (A.5), (32c) follows. 0 
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